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INTERNAL COORDINATES FOR THE HT - H PROBLEM
by
David G. Vaala and C. F. Curtiss

Theoretical Chemistry Institute, University of Wisconsin
Madison, Wisconsin

ABSTRACT

Three :ranslational and three rotational degrees of freedom
are separated from the Schroedinger equation for H+- H . The
separation of the rotational degrees of freedom is carried out using
two different definitions of the ”body-fixéd" axes. The resulting
exact equations involve only the coordinates of the internal motion
of the three particles, and are symmetric under the interchange of
the two protons. Three different sets of internal coordinates
are censidered for each of two specifications of the standard

configuration, or body fixed axes.

* This research was supported by the following grant:
National Aeronautics and Space Administration Grant NsG-275-62.




The potential energy of a system of N particles moving in free
s pace, is invariant under a translation of the center of mass of the
entire system. This commutativity of the hamiltonian of the system
with the translation operator implies the conservation of the total
linear momentum and enables one to write the total wave function as
a product of functions which describe the motion of the center of
mass and that of the system relative to the center of mass.

Moreover, in field-free space, the potential, and therefore
the hamiltonian of relative motion, is invariant under the continuous
group of three dimensional rotations of the entire coordinate system:
from this follows the familiar result that total angular momentum
is conserved. Thus, the eigenfunctions of this hamiltonian may form
bases of the representations of the rotation group.

Group theoretic techniques have been used by Hirschfelder and
W‘Egnerlj Curtiss, Hirschfelder and Adlerz, Curtiss and Adler3, and
Curt1554 to effect the separation of three rotational degrees of
freedom from the corresponding N-particle Schroeding equation. The
result is a set of coupled differential equations in the internal
coordinates of the system.

In discussing the problem of the separation of the rotational
degrees of freedom it is convenient to introduce the concept of a
coordinate system whose origin is the center of mass of the
N-particle system and which rotates so as to keep the N particles
in a specified "standard configuration'. The three degrees of

freedom which are separated are the three Euler angles ascovizted



with the cotation which takes the original coordinate system into the
standard configuration.

For a given system one particular set of internal coordinates
&y prove betier suited to the problem than another. Moreover, for
4 givea set of internal coordinates, the final coupled equations
will differ Jdepending on the definition of the standard configuration
tor tne problem, Finally, different sets of internal coordinates
together with different choices of the standard configuration may
emphasize in dissimiliar ways any symmetry features of the problemn,
and perhaps suggest convenient methods of solving the final equations.

Tt is the purpose of this paper to develop the Schroedinger
equarion for the three particle problem ut-H , in several sets of
internal coordinates for each of two distinct choices of the
standard configuration.

we begin by considering the full N-particle Schroedinger
equation together with the formal separation of the translational
and rotational degrees of freedom, and then specialize to the case

of three particles.

1. Separation of the translational motion

The N-particle Schroedinger equation in a space fixed coordinate

system is

7 M DX,k (1.1)




. . th ,
where V is the potential energy, m the mass of the n  particle,

‘o th
ET the total energy, and X 1 the position vector of the n
particle in a space fixed coordinate system. We consider the N
particlies as members of two subsets, subset A and subset B. The

particles in subset A are numbered 1,2,...a, while those in subset B

are numbered a+l, at+2, ...N. The separation of the motion of the

~
<

(o

ntar of mass is carried out in two different sets of coordinates.

l.a. Center of mass coordinates. I

To separate the motion of the center of mass we employ the

following sets of coordinates:

the three cartesian coordinates of the center of mass of the

entire system,

Mz

MnaXnk N
Ma

Nzt

the three coordinates of the center of mass of subset A

relative to the center of mass of subset B,

a N
1
e "y L MAKnk = 7 ) M Yk

n=a4i

the coordinates of the first a-1 particles relative to the

center of mass of subset A,

a
_ S oma X
ynk - Xnk HA;:‘ n n k (n~1~,.‘ B ;)




and finally,

the coordinates of the particl

center of mass of subset B,

Xnk-— "—Z_m" n'k (n=a+l,.

These are illustrated in Figure 1.

the equation describing the relativ

es of subset B relative to the
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n a+|

With this choice of coordinates

e motion of the entire system is
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where M

uF
H
™~
2
3

and the quantity /jZ is the reduced mass of the two subsets of
particles. The energy E 1is the total energy less the translational

contribution.

I.b. Center of mass coordinates. II

Consider next a second transformation, which we later associate
with standard configuration II, in which the particles are again
divided into two subsets and numbered 1,...a in subset A and
atl,...N in subset B.

To effect the separation of the center of mass we employ
definitions of the coordinates which are slightly different from the

previous choice. Specifically, these independent coordinates are:

the position of the center of mass of the entire system,

N
v = jiijln:{rl v
k Nz

n=1i

mp

the inter-particle vector,




and

Yok = Fox T xak)(n=1,...a-l),

Yok = *nk T Fnk (n=a+l,... N-1)

Thus, if a and N designate two nuclei, Yok (n=1,...a-1) , is
seen to be the electronic vector of the nth electron of subset A
relative to nucleus a . A similar identification is made for the
ynk,(n=a+1,...N-1), for subset B. These coordinates are illustrated
in Figure 2.

The Schroedinger equation for the relative motion of the system,

in the above coordinates, is
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where E

is again the energy less the

It is evident that the separation
nuclei (rather than the vector between
two subsets) introduces cross terms in

energy.

translational contribution.
based on the vector between
the centers of mass of the

the expression for the kinetic



IT. Separatiocn of the Rotational Coordinates

The problem of separating the rctaticnal degrees of freedom from

the N-particle Schroedinger is complicated by the questicn of how one
specifles the corientation in space of an N-particle "non-rigid' body.
Ae in the classical treatment of rigid bodies, we wish to define a
set of Fuler angles relating the '"body-fixed" axes to the space-fixed
ases. These angles can then be said to describe the orientation of
the body re.:tive to a space-fixed frame. For this purpose it is
convenient to define a "standard configuration" of the N-particle
system. A rotation R( & ,ﬁ , b’) can then be defined as the
votation which takes the space-orienred center of mass coordinate
cysten into coincidence with the bedy fixed system.

Since the hamiltonian commutes with the generators (the Jk) of
the three dimensional rotation group, its eigenfunctions may form

J

bas:~ »f the represeuntations of the group. In particular, if 22;
is a wave function labeled by the total angular momwentum J , and
the space z-axis projection of the total angular momentum //u , a

rotation R of the space fixed cocrdinates mixes the 2J+1

degenerate states

uR %3— = /‘Z &?—R)/o/u éo:r (11.1)

If R rotates the spacs fixed frame into the standard

configuration, the values of the coordinates in the rotated frame,

16




and v/ are given b
nk yK P) g y
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We may define the standard ccanfiguration wave function as

J

J
— | J
Xﬁ B gg (gnk) él&
Making use of the identity

ﬂjzyiugb - Ug %ggnu, 4

T
it is easily seen that 7(4 is given by

X; = Ug %,T(‘ank,gk)

Since a rotation R mixes the 2J+1 degenerate states

equation (II.1) can be used with equation (II.5) to give

J_ 7 T S X T
X -;S(R /)u»;/é - /ZBCR)/,L@%

When use is made of the 'orthegeonality'® relation

(11.2)

(I1.3)

(I1.4)

(11.6)



2‘9(9\) ) = 3 (IL.7)
. ] (R = / :
> /}“ o /9""

T
it is possible to write ?ﬁ as a sum of products of representation

/u

coefficients and functions involving only the 3N-6 internal

coordinates

T 63' - (11.8)

g =2 Dy, X
Vs A asinat

The two remaining tasks are first, to uniquely specify the
rotation R, and second, to apply the hamiltonian of equations (I.2)
and (I.3) to a wave function of the form given by equation (II.8).

We now define the two standard configurations associated with
the two different center of mass coordinate systems, and consider
explicitly the three particle problem, H+ - H, for which a =2

and N = 3 .

I1I.a. Standard Configuration I

Standard configuration I, associated with the center of mass
coordinates used in obtaining equation (I.2), is defined by requiring
that the vector between the centers of mass of the two subsets be
along the z-axis and that particle 1 1lie in the positive x-z half-

plane. (See Figure 3) More precisely, we have

12
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J
= .9
Zszyj 0 (I1.9)
J
Zszyl‘]= 0
J

The internal coordinates are then the cartesian coordinates in the

rotated sy. wm, oaawnely, (Figure 3)

- v, . 17.10
g X R3JyJ ( )
dJ

the !istance between the two centers of mass,and

N
]

. - \
e z Ry o (L3 (11.11)

4

the coordinates of particle 1 relative to the center of mass of
particles 1 and 2.

We choose to identify particles 1 and 2 as protons, and
particle 3 as the electron. Then ? is the distance between the

electron and the center of mass of the two protons, while and

le

2,5 are the coordinates of proton 1l relative to the center of mass

of the proton system. Because of the specification of the rotation,

(L1.9), Z, igs identically zero.

To carry out the transformation to the internal coordinates we




must consider the effect of the hamiltonian of equation (II.2)

operating on a wave function of the form
J
DN
— ;z> ;(;

$ince the hamiltonian involves derivatives with respect to the

Told veriables', Y and Vi * We must evaluate expressions such as

c)gk A r)g

| J »
Q,%(‘jm,gh) ? (R),og Z&Rj Q)XT (11.12)

e . J
_.%%i(ﬁ’f_ﬂ.’i) = Zﬁ@(_@&eﬁx ; &(R) 9;(0 (11,13)
" v

it is evident that this requires a knowledge of the derivatives of

J
t " 3 " ] R
he '"nmew variables', 2,10 %190 f’ , and the functions D( )
with respect to the Vi and Vg The actual evaluation ol these

derivatives is a lengthy operation and is described in detail

4
)53 The final result is that the Schroedinger equation

1
elsewhere.
for the H+-H problem can be written in terms of the internal

coordinates f > 21y and zy3 > as

(I1.14)

[k + ““’“’}. + Ko, '\"‘v’:ix (rﬁu,ﬁss) (f 3, 303)
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where
7\2 o 20
K= - 259" 9f (? 1
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kaz “4—;— Sé.zl 3},3 3 93" 3
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The operators p are defined by

()
MA = :_}[(3'3_%; - 3::5%,'3)+ g—:T’-,o]

and the numbers lj:(:y,ﬁ) by
/2
}:t(:r,,o) = [3'C3*l)‘_—/o(,o:t|)]

(I1.15)

(11.16)

(11.17)

(11.18)

(11.19)
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The operators Cx; are raising and lowering operators on the

index s ,

~ T J (I1.20)

and it is these operators which couple the equations.

Ii.b. Stan.ard configuration II

Standard configuration II, which is associated with the
definition of the center of mass coordinates leading to equation
(I.33, is specified by requiring that the inter-particle vector be
parallel to the z-axis, and that particle 1 lie in the positive

x-z half-plane (Figure 4). Thus

Ry, = R,.y. = O
Z 1573 Z 237

] J

(IT.21)
PRI

J’

The internal coordinates of the problem are then (Figure 4),

R..y.
z 3373

}

e T ZRkjylk’(k=l’3)
J

“
|

(I1.22)
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which correspond to the inter-proton distance and the electronic
vector respectively, if particles 2 and 3 are the two protons
and particle 1 the sole electron.

When the hamiltonian of equation (I.3) is applied to the wave
function of equation (I1.8), and use made of the expressions for the
derivatives of the 21 Y s Rij , and D(R;g as before, the
tinal result is the Schroedinger equation for the system Y- in
the interns. coordinates f » 291 0 213 , corresponding to the

second definition of the standard configuration. The resulting set

. . .6,
of equations as obtained by Kouri is

'y , T ~ v7
;LK* Ka“"% e V] X/: = £ )(/o (I1.23)

where

K= =3t (S %) (a2

(IT.25)
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(1I.26)
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and /A! is the reduced mass of the proton-electron pair.

Sumwarizing, we have utilized the translation invariant property
of the hamiltonian of the system of N particles to remove three
degrees of translational freedom from the problem. To do this we
eapivyed rwo different definitions of the center of mass coordinates.

Secondly, the invariance of the hamiltonian under the group of
three dixensional rotations allowed the sepsaration of three rotatiocnal
degrees of ¥ cedom. C(orresponding to the two definitions of the
center of muss coordinates of relative motion, the Vi and Yok °
we specified two diiferent rotations for the H -H problem which
rotate the space fixed axes into the (two) standard configurations.
The Ei:ier angles associated with a given rotation change as the
particles move so as to maintain the particles in the standard
configuration. Thus,in the standard configuration the particles
can evecute only relative motion. The wave function can be written

J
as a sum of products of representation coefficients D(R) , and
. . T
functions of the "internal' coordinates, the X (? 9" 5,3)
» ~)dl)
We arrive finally at two sets of coupled differential equations
+ .

(I1.14 and 11.23) for the H -H system. In the next section we
proceed to investigate various different sets of internal coordinates

and compare the equations obtained from the two different standard

configurations.




TLI. Standard Configuration I and the Internal Coordinates

This section is devoted to the development of the Schroedinger
equation, as obtained using the first standard configuration, in
rhree sets of invernal coordinates. The formal definition of the
new variables along with the expressions for the first derivatives
with respect to the old variables are given for each transformation.
The expressions for the second- and cross - derivatives are included

in an apperiix for convenience.

1
III.a. Internal Coordinates gj \;) Q

ve consider first a transformation to the set consisting of the

[
inter proton distance E. , the distance ? between the electron
and the center of mass of the protons, and Q , the angle between

these two. (Figure 3), Formally these coordinates are defined by

the equations

(I11.1)

fou & = 3"/3!3

(II1.2)
F= 2 J;:fw*}.zs

(I11.3)
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With these definitions the derivatives with respect to the cld

variables become

D = 2[einl L + Coo D N
33” 2[:4444 Q 3? + —?QQ] (I11.4)
2 gfeopfe - 28
65.; - Z[MQ&_ —s?""“g&] (I1L.53)

3%‘ - é—% (111.6)

The Schroedinger equation in the intermal coordinates f s E’,

and CQ becomes

(K+H:Z«r ) ZI , :f EX] (1T1.7)

where

1[5 29 :
l<= —_ 7}-{;-{&;2 + ?é?} (I11.&)
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L g

(o) _ K(ampn) (IT1.9)

/}0 Qumc
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HU) _J“M a% t(0xt) ot &1 Ay(3,0) (ITT.11)

ot = T 4mpme ('F

The first two terms in equation (II1.7) describe, respectively,

the internal motion of the protons and the relative motion of the
)
electron about the two protons. The term 1{40 corresponds to the
(1)
internal motion of the three particles, and the l4ﬁyord is

responsible for the coupling of the various rotational states.

II1.b. 1Internal Coordinates Y, , Y, , and Y3

The second transformation is to the set of the three inter-

particle distances, r r, and r,. The following definitions

1’ 3

apply (Figure 5).

(I11.12)

5 _ . 2 - i
v, = f + M ¥ +aMEf ey

it —a 2 — i _
Yoz o ME - a2MTf oy (111.13)
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Figure 5
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(I11.14)

&
I
wi

with

m,

M =
m'i-ma.

{ = % when particles 1 and 2 are equivalent). The expressions for

the derivat:ves may be shown to be

§Q_~ Aivs+FHfool o ~ Hi-Afewsd o ) (I111.15)
3 o,

Y, Ya oY oY3

;o_ - ?-fF‘YSC,o-oQ N + f’—ﬁ"scooq ] (I11.16)
3?1 V. aY' ’ Yz aY;_

- L ]
S ) Mvafand® o Mafacd o (I11.17)
oY Y M Ya oYz

After a moderate amount of algebra, the Schroedinger equation

in the coordinates Tys Ty and r

9 3 may be written again in the form

(0) TJ ) 3 _ .
(K“’ Hﬂ, * V)XA(Y”Yg) Y;) *Z‘ H/O,o' Xﬂ’ (v,‘ YnY;) = ELI(Y,)V,}Y?\ (111.18)
ﬁ'
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Mpe Y3 Ar3\ 3 93 (I11.19)
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/gfl mf’ /zii-\’zaYl I ?} 3!‘1 YZ aYl Y| Yo
."2}01( v YA 2 + V:z- Yo+ Y::— S
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+ Y2 + Y3 -, o (I11.21)
()] 2
“ L 1" 2mpime J N B(J_Q_ 1 _9_)
/QVO:H = ¥ 2 ZMPMe (Y, -g-Yz }’;Yf) Yi oy, Y2 Qv
‘YZ- ‘(L
i - : .22
i(pil) ‘—L—B‘l"' 11('5,,0) (I1T.22)
. y
2 2 T 2 2,2 4 4 qy
with B = Z(YIYJ +Y Yy *YzYs)-(Y, +Y2-+Y3)
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This equation appears quite cumbersome and admits of little
easy identification of its component parts. The set Ty Ty and
r3 has, however, the advantage of readily exhibiting any symmetries
involving two or more of the coordinates. As the standard
configuration upon which the form of this equation ultimately
depends treats the two protons symmetrically we might consider the
effect of interchanging the two protons. It is readily confirmed

. . 1 . .
that all terms except the coupling term, Hé,gil , are invariant

under this transformation.

III.c. Confocal elliptic coordinates

the equation in the three inter-particle distances immediately
suggests a potentially more useful set of internal coordinates,
namely the set of confocal elliptic coordinates. These coordinates

are defined by

A= YY)+ Yz
¥3
/ - Y -Yz (I11.23)
Y3




With these definitions the various first derivatives may be

written
9 _ Afd .9
3-7'. p— R(Q% +)sz-) (T1I.
d o
£ = Hs- ;;) air.
o _ L[~ O o )
3 = "ﬁ(“ﬁ%ﬁ)* 3R (Tt
29 .29 _ 2 4 o
Y &Y. + Yo oYy — E{(Xzfz) ()ég.x -/Uy) (111.

The quantity B2 is

B = R4(>\Z— |) (l-/}) (111,

Finally, the Schroedinger equation in confocal elliptic coordinates

may be written

(I11.

o) " +
(K+ H,:,o <+ V)X,:(XV‘,Ry* Z;Hﬂ/l X/j’()/l,ﬂ) = EX/,(}/“’R)

24)

25)

26)

27)

28)

29)
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IV. Standard Configuration II and the Internal Coordinates

In this section we develop the Schroedinger equation corresponding
to the second definition of the standard configuration, equation
(I1.23), in three sets of internal coordinates, two of which are
identical to the last two sets in the previous section. Thus the
effect on the final equations of the different symmetrical treatments
of the two protons may be noted. The presentation of results is

similar to tnat in section IIT.

!
IV.a. Internal Coordinates Y , ? , 6

We begin with the transformation from the internal coordinates

i
? s 211 0 and 214 toO the set of polar coordinates Y , Y s

and 6 , defined by Figure 4.
(= ¢
Jn = Ym0 (1v.1)
5'3 = YMQ

The relevant first derivatives, in the new variables, are

(Iv.2)

D L acnl D 4 e D
o3 Meé_: MY




o (IV.3)
= CooB - — e B
5%3 oY 3 9%
‘Q‘ = = (IV.4)
of  of
2 T PN
2L = 2.l L (1v.5)

i
O 33,3 o¥* ¥ ov Y0

. . . , , 5,6
The Schroedinger equation in polar coordinates becomes™’

) })
( K+ H,(o,o) ¥ V)X:(Y, f;9)+; H/(%: X/O,I(Y’e'e)g EX;'Y,?,G) (1V.6)

with

R 2(¢5) .
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[ ctf ! .10
( AP ) (o) (1V-10)
- -1

The quantity//g has already been defined, and is the reduced mass

of the proton-electron pair.

The term Hég) in equation (IV.6) is clearly the spherical
polar Laplacian for the electron with the term in d? removed.

This is related by a simple ratio of masses to the Born-Oppenheimer H;

electronic hamiltonian.

The first term plus the centrifugal potential - *%iiig%}——
p
is the radial equation in the absence of any potential. Finally,
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1 (D

the terms
8,8 *

1 provide the coupling of the states of

different s .

IV.b. Internal coordinates Tys Tos and T,

The three inter-particle distances are defined by the equations

Y,=Y (IV.11)
z 2 2
Yo =Y3 +Y, +2Y,X3 (006 (1v.12)
{
v3 =§ (Iv.13)

To facilitate comparison of this next result with its counterpart
in standard configuration I, (IIIL.18), the above definitions
correspond to an effective renumbering of the particles in standard
configuration II. (Figure 6).

In view of the definition of the new variables, the first

derivatives become

YaavY-Ys > 27 av.is)
Viavsesds O | _[Yethi-Ys ] :
I: ‘ 3&. A, *3‘&:\_[ E P AR

o -
oY
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S . Y3ivicwod a] [ Yievi-Y, 7.] 15
;% (& e AR
2 = — YnYaMG A | (1IV. 16)
00 Y, oYz

The Schroedinger equation for H+-H in rl, Ty and Ty, and

standard configuration II, may be shown to be

(K+ H»”/’*V)X (Vn,Yz)Ys)-i-Z, H y,)vx) é‘)( (Y,)v,,yﬁ (IV.17)

with
2 o
e Q_(Y’—)
k - — —”Tf—,' Ygz oY, 3 Y3 (1v.18)
L2(v2)+ 1 2lwg) )
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The quantity B 1is defined in connection with equation (III.18).
Again it is easily verified that all terms except the coupling

terms possess the property of being invariant under proton interchange.

IV.c. The confocal elliptic coordinates

Since the particles are now numbered identically in the two

standard configurations, the final transformation, into the confocal




elliptic system, has already been defined (III.23). The expressions
for the first derivatives remain the same and a little work shows
the Schroedinger equation in confocal elliptic coordinates and

standard configuration II to be

o) : o (VD
(KH'I,(M +V) X;J()y,‘, R)+ %_ H/o/o, )(;7()7“),2): E Xj(),/“,(z) (1v.22)

with

K=~ b b shR'5%)

(Iv.23)
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V. Summary

The translational and rotational invariance of the hamiltonian
for the H+ - H system has been employed to separate three
translational and three rotational degrees of freedom. In utilizing
the rotational invariance we defined the rotation which carries the
space fixed frame into a body fixed frame in two different ways.
This defined two standard configurations of the three particles.
Both definitions treated the protons symmetrically. A consequence
of this symmetry is explicitly evident in equations III.18 and IV.17.
It is easily shown that these equations are, except for the coupling
terms, completely symmetric in the coordinates r, and r,

Sections III and IV are devoted to the development of the
Schroedinger equation for H+ - H in three different sets of
internal coordinates and a particular choice of the standard
configuration. The resulting six sets of equations may each be
written in terms of five operators, two of which exhibit explicitly
the coupling of the various rotational states. The other three
represent the electronic motion about the stationary nuclei, the

motion of the nuclei, and the internal motion of the entire three

particles.
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